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Trapping rate dependence on the trap size in one dimension
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The one-dimensional trapping problem is revisited with emphasis on the role of the size of the
traps. It is discovered that the process rate is dependent on the trap size whenever the traps are
correlated. Qualitatively, the effect is manifested as slowdown or acceleration of trapping with
enlargement of traps, according to whether there is trap attraction or repulsion, respectively. The
dependence is studied in detail for a particular model.
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The problem of survival of a diffusing particle among
randomly located static traps is widely used for the the-
oretical description of a variety of diffusion-controlled
processes in physics and chemistry such as fluorescence
quenching, fast chemical reactions in liquids, migration
of excitations in solids, etc. [1]. As usual, most exten-
sively studied is the one-dimensional (1D) case, which
yields to explicit analysis thanks to restricted topology
of the line [2]. The experimental significance of this case
is discussed in the literature [3,4]. In this paper we re-
visit the 1D problem with emphasis on the role of the
trap size b. Note that in higher dimensions the depen-
dence of the trapping rate on this parameter is primarily
due to the fact that the absorbing surface of a trap varies
with b whereas in 1D, where such a “surface” is repre-
sented by points, this is not the case. Perhaps, this could
have been a motivation for a seemingly widespread opin-
ion that in 1D the trapping kinetics is independent of the
trap size. At least, the 1D problem has been considered
so far within the point-trap setting only (see Refs. [3-5],
and references therein).

In the present work, we show that this opinion is gen-
erally not valid. We have discovered that dependence of
the trapping rate on the trap size b does exist whenever
the traps are distributed in a correlated fashion. The
origin of this effect is as follows. In 1D the problem can
actually be reduced to that with point traps; however,
the distribution of such effective traps turns out to be
dependent on b (in particular, the effective trap concen-
tration is different from the original one). In turn, the
dependence on b shows up in the trapping kinetics. Only
in the case of uncorrelated traps does the effective ensem-
ble prove to be equivalent to the original one and hence
the parameter b drops out from the kinetics.

Consider a point Brownian particle moving on a line
in the presence of randomly distributed static traps of
size b. The traps are supposed to be perfect, that is,
the particle is instantaneously absorbed upon hitting a
trap. The distribution of traps is characterized by the
probability density ¢(#) for random distances between
the centers of adjacent traps. The trap concentration c
is equal to the inverse of the mean value of such distance:
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c= (/Ooo&p([)dl)_l. (1)

The quantity of interest is the survival probability P(¢;b),
defined as the probability for the particle to be untrapped
up to time ¢t (we introduce b in the notation in order to
emphasize the presence of this parameter). It is assumed
that the particle’s starting point occurs in the trap-free
part of the line, so that P(0;b) = 1.

Note that unlike higher dimensions, in 1D the absorb-
ing “surface” of traps is represented by points. This ob-
servation allows one to reduce the original problem to one
with point traps. To do this, let us cut out those parts
of the line which are covered by at least one trap, paste
together the remaining intervals, and put a point trap at
each sticking point. As a result of such “cutting proce-
dure” we arrive at an effective ensemble of point traps.
To find the effective probability density, ¢(£), note that
a distance £ between the neighboring effective traps cor-
responds to the distance £ + b between the former trap
centers. Taking into account normalization to unity, we
get

_ p(t+b)
e +b)de”

The effective trap concentration is given by

([T e+ b)de
c—(/o w(e)dz) =g ©

Equations (2) and (3) involving b indicate that the statis-
tical properties of the effective ensemble depend on the
trap size.

After the reduction to the case of point traps, one can
easily calculate the trapping kinetics using that in 1D a
particle dies only on one of the two nearest (left and right)
traps. Note that the probability density of the particle
birth at intertrap interval of length £ equals ¢ £ &(¢) [6].
Let S¢(t) be the probability of survival for such a particle
during time t averaged over its starting positions. Then
the desired survival probability P(¢;b) can be expressed
as

3(£) (2)
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Pt = [ suveesear. (4)
0
Substitution of Eqgs. (2) and (3) into Eq. (4) yields

P(t;b) = foco Se(t) Lo(L+b)de
T [ tee+b)de

(5)

The explicit form of the function S¢(t) is well known [4]
8= 2 2 , Dt

Se(t) = = 7;(2714- 1) “exp (—7r (2n+1) 8_2) , (6)

where D is the diffusion coefficient; for small ¢, another
expression is more convenient:

Se(t) =1-— 4vDi [1 +2 i(—l)" exp (—"%2)}

VY 4Dt
= nt
+4) (-1)*nerfc| ——}, 7
Srnert(375) @

where erfc (z) = (2//7) [° exp(—z?) dz is the comple-
mentary error function. Thus, Egs. (5)—(7) give the so-
lution to the problem.

From Eq. (5) it is clearly seen that the trap size affects
the trapping kinetics. However, in the particular case of
noncorrelated traps, the process rate is in fact indepen-
dent of b. Indeed, in this case the (Poisson) ensemble of
traps is described by the probability density

@nc(f) = ce k. (8)

Inserting Eq. (8) into Eq. (5), one can check that the
parameter b is “canceled,” that is, Ppc(¢;0) = Puc(t;0).
It follows that for noncorrelated traps of arbitrary size,
the process is described by the well-known Balagurov-
Vaks formula [5]

oo 2.2 t
Pac(t;0) = ;45/0 exp (—ﬂ> ® iz 9)

T2 sinh

Note that such a remarkable feature of the noncorrelated
case is actually due to the fact that a Poisson ensem-
ble stays invariant with respect to the cutting procedure
described above [since the effective probability density
@nc(f) calculated from Eq. (2) coincides with ¢nc(€)].
Moreover, the Poisson ensemble is the only one to have
such a property, as can be shown by analyzing Eq. (2).

So, the trap correlations “induce” dependence of the
kinetics on the trap size. To analyze the effect from the
qualitative point of view, let us first discuss the b de-
pendence of the effective trap concentration ¢. Consider
a large interval of length L containing N =~ cL finite-
size traps. Under the cutting procedure, such an interval
is transformed into one, say, of length L with N point
traps. Obviously, L < L and N < N, whereas the ratio
N/L ~ & may turn out to be either greater or smaller
than N/L ~ c¢. On the other hand, for noncorrelated
traps ¢ = c.

Proceeding from the latter remark, introduce a “ref-
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erence” Poisson ensemble of traps, with the same values
of c and b. If the traps are attractive, their overlapping
is more intensive as compared to the reference ensemble,
so that L > L, and N < N,.. Hence, N/Z < Nnc/inc,
that is, ¢ < c¢. If the traps are repulsive, they are dis-
tributed along the line more uniformly than in the ref-
erence ensemble and, analogously as above, one is led to
the opposite inequality, ¢ > c. Thus, for attractive (re-
pulsive) traps, the point trap ensemble generated by the
cutting procedure is more sparse (dense) than the orig-
inal one. Moreover, this effect is strengthened with the
increase of the trap size, that is, the ratio ¢/c monotoni-
cally decreases or increases with b, according to whether
there is attraction or repulsion between the traps.

This observation suggests that the b dependence of the
kinetics is qualitatively characterized as follows: with en-
largement of traps, the trapping becomes less (more) in-
tensive, provided there is trap attraction (repulsion). At
the initial stage of the process, this hypothesis can be
proved rigorously. Indeed, from Eqs. (4) and (7) under
the condition ¢2Dt < 1 it follows that

P(t;b) ~ exp [—% (2Dt)" 2] . (10)

Note that this formula is of Smoluchowski type, which is
obviously due to the fact that at small times one can ne-
glect the competition between the traps [1]. It should be
stressed that the effective concentration is the single char-
acteristic of the trap distribution entering Eq. (10) and
hence the specific form of the probability density ¢(¢) is
unimportant here. In view of the monotonic character of
the b dependence of é discussed above, from Eq. (10) it is
seen that finiteness of the trap size inhibits or promotes
the process as compared to the case b = 0, according
to whether the traps be attractive or repulsive. Note
that by the conclusions of Refs. [7,8], trap attraction (re-
pulsion) generally leads to the slowdown (acceleration)
of trapping. Thus, manifestation of trap correlations in
the reaction kinetics is enhanced due to the finiteness of
the trap size, at least at the initial stage of the process.
Moreover, with the growth of b such an effect becomes
more pronounced. In particular, in the case of attrac-
tive traps, the increase of the trap size results in the
slowdown of trapping. This rather unexpected fact is
striking evidence that the nature of the b dependence of
the trapping rate in 1D is different from that known in
higher dimensions where the surface of a trap is growing
with b.

For intermediate and large times, 2Dt 2 1, the analy-
sis of the b influence on the kinetics is much more compli-
cated. The reason is that the process rate is no longer de-
termined by the (effective) concentration only and more
detailed information of the probability density ¢(£) is
required. Nevertheless, one general remark about the
trapping rate at asymptotically large times, t — oo, can
still be made. The crucial point here is that at such
times, the kinetics is controlled by the particle’s survival
in very large “voids” free of traps [5,9]. So, the (loga-
rithmic) asymptotics of the survival probability Eq. (4)
is determined by the tail of @(£). Now, from Eq. (5) it
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is seen that if the decay of ¢(£) is not anomalously fast,
the difference between ¢(£+b) and ¢(¢) can be neglected
and hence P(¢;b) is reduced to P(¢;0). In other words,
one can expect that in the long-time regime, the trap-
ping rate is independent of b (in the main term of the
asymptotics).

To illustrate our general statements, consider a partic-
ular model. Let the probability density ¢(£) be of the
form

alt) = 5(‘7) (act)*teaet, (11)

where o > 0 is a dimensionless parameter, I'(a) =
fooom"“le“m dz is the gamma function, and c is the trap
concentration [cf. Eq. (1)]. By varying « one can imitate
different qualitative types of trap correlations. Namely,
the case a = 1 is that of noncorrelated (Poisson) traps
since Eq. (11) is reduced to Eq. (8). For o > 1, small
intervals between adjacent traps are less probable as com-
pared to the case of noncorrelated traps, which may be
interpreted as a manifestation of trap repulsion. In par-
ticular, in the limit o — oo one has ¢4 (£) — §(¢ — 1/c),
which corresponds to a regular lattice of period 1/c. In
contrast, for 0 < a < 1 small values of £ are more prob-
able, which can be thought of as a trap attraction ten-
dency. In the limit @« — 0, the traps are gathered in
small, dense clusters separated by very long void inter-
vals (which is typical of intermittency phenomenon [10]).

Substitution of Eq. (11) into Eq. (2) after some trans-
formations yields

ac

— a—1 —ac(f+b)
(e, abc) [ac(€+b)]" e , (12)

Pa(f)

where I'(a, 2) = fzooa:"‘_le‘zda: is the incomplete gamma
function. Correspondingly, from Eq. (3) the effective con-

centration is found as

where p = bc is the “volume” fraction of traps. Using
Eq. (13), one can check that ¢, — 0 as a — 0 (infinitely
strong attraction), whereas in the opposite limit, o — oo
(infinitely strong repulsion), one has é, — ¢(1—p)~?! (for
p < 1). Moreover, the analysis of Eq. (13) shows that for
fixed b, ¢y is an increasing function of o (Fig. 1). On
the other hand, with « fixed and b increasing, &, grows
if & > 1 and decreases if & < 1 (Fig. 1). Note that this
is in agreement with the above qualitative discussion.

By means of Egs. (12) and (13) the survival probability
Eq. (5) takes the form

Efs° Sejac(t) z(z + ap)*te ®da
ape*” I'(a, ap)

P,(t;b) = (14)
The time dependence of P,(t;b) calculated from Eq. (14)
is presented in Fig. 2. The small-time behavior of P,(t; b)
is described by Eq. (10) with & given by Eq. (13). At
asymptotically long times, ¢ — oo, from Egs. (6) and
(14) it follows
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FIG. 1. The ratio ¢o/c as a function of the “volume” frac-
tion of traps, p = bc. Numbers indicate the values of a.

—In P, (t;b) ~ 3(n/2)%/3 (a®c*Dt)V/3. (15)

Equation (15) shows that the long-time survival depends
on the character of trap correlations rather than on the
trap size. On the other hand, in the limiting case o = oo
where a trap lattice is formed, the long-time decay of the
survival probability is b dependent:

—In P (;b) ~ w2c®*Dt/(1 — p)2. (16)

As is seen from Fig. 2 and can also be proven analyti-
cally, for a fixed b the probability P, (t;b) is a decreasing
function of parameter a. This means that trap repulsion
(a > 1) leads to the increase of the trapping rate as com-
pared to the case of noncorrelated traps (o = 1), whereas
trap attraction (o < 1) results in the process slowdown.
Let us note that in the case of point traps (b = 0) this
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FIG. 2. Plot of the function — In P.(¢;b) as calculated from
Eq. (14) for p = 0 (solid curves) and p = 0.5 (dashed curves).
Numbers indicate the values of a.
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effect was observed in [7]. Figure 2 also demonstrates
that for « = 1 the kinetics is independent of the trap
size. At fixed a # 1, the survival probability P,(t;b)
monotonically increases or decreases with the growth of
b according to whether & < 1 or @ > 1. This means that
the trap correlation influence on the trapping kinetics is
more pronounced due to a finite trap size, which supports
the qualitative picture discussed above.

In summary, we have demonstrated that the trapping
rate dependence upon the trap size does exist in 1D. The
only case where the trap size does not affect the kinet-
ics is that of noncorrelated traps. We have also shown
that the finiteness of traps either inhibits or promotes the
trapping process according to whether the traps are at-
tractive or repulsive, thereby strengthening the manifes-
tation of trap correlations. This effect may appear useful
in detecting and studying trap correlations in real 1D
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systems. It should be emphasized that the dependence
discovered is due to the presence of trap correlations and
hence its origin is essentially different from that in higher
dimensions. This is strikingly demonstrated by the fact
that in the case of attractive traps the increase of the
size parameter b leads to the slowdown rather than the
acceleration of trapping. Our final remark is that the as-
sumption of trap perfectness is not critical for the results
obtained, which in fact can be easily extended to the case
of impenetrable traps.
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